login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193521
G.f.: A(x) = ( Sum_{n>=0} x^n/sf(n) )^3 where A(x) = Sum_{n>=0} a(n)*x^n/sf(n), and sf(n) = Product_{k=0..n} k! is the superfactorial of n (A000178).
2
1, 3, 9, 51, 795, 43923, 10372323, 11996843043, 75315947454723, 2788806652875290883, 654625444656522114316803, 1045012738906587147509753740803, 12046169853230117709495421609499289603, 1053916215003128938522329980606467994425804803
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jan 05 2022: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..k} BarnesG(n+2)/(BarnesG(j+2)*BarnesG(k-j+2 )*BarnesG(n-k+2)).
a(n) = Sum_{k=0..n} A009963(n, k) * Sum_{j=0..k} A009963(k, j).
a(n) = Sum_{j=0..n} A009963(n, j)*A193520(j). (End)
a(n) ~ c(n) * A^2 * 3^(5/4 + n + n^2/6) * n^(-5/6 + n^2/3) / (2*Pi * exp(1/6 + n^2/2)), where c(n) = 1 if mod(n,3) = 0 and c(n) = 3^(4/3) / n^(1/3) if mod(n,3) = 1 or if mod(n,3) = 2, A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 29 2023
EXAMPLE
Let F(x) = 1 + x + x^2/(1!*2!) + x^3/(1!*2!*3!) + x^4/(1!*2!*3!*4!) + ... + x^n/sf(n) + ...
then F(x)^3 = 1 + 3*x + 9*x^2/(1!*2!) + 51*x^3/(1!*2!*3!) + 795*x^4/(1!*2!*3!*4!) + 43923*x^5/(1!*2!*3!*4!*5!) + ... + a(n)*x^n/sf(n) + ...
MATHEMATICA
a[n_]:= a[n]= Sum[BarnesG[n+2]/(BarnesG[j+2]*BarnesG[k-j+2]*BarnesG[n-k+2]), {k, 0, n}, {j, 0, k}];
Table[a[n], {n, 0, 20}] (* G. C. Greubel, Jan 05 2022 *)
PROG
(PARI) {a(n) = prod(k=1, n, k!)*polcoeff((sum(m=0, n+1, x^m/prod(k=0, m, k!) + x*O(x^n))^3), n)}
(Magma)
A193521:= func< n | (&+[ A009963(n, k)*A193520(k): k in [0..n]]) >;
[A193521(n): n in [0..20]]; // G. C. Greubel, Jan 05 2022
(Sage)
@CachedFunction
def A009963(n, k): return product(factorial(n-j+1)/factorial(j) for j in (1..k))
def A193521(n): return sum(sum(A009963(n, k)*A009963(k, j) for j in (0..k)) for k in (0..n))
[A193521(n) for n in (0..20)] # G. C. Greubel, Jan 05 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 29 2011
STATUS
approved