The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193410 Expansion of (1-3*x)/(1-6*x+18*x^2). 3
 1, 3, 0, -54, -324, -972, 0, 17496, 104976, 314928, 0, -5668704, -34012224, -102036672, 0, 1836660096, 11019960576, 33059881728, 0, -595077871104, -3570467226624, -10711401679872, 0, 192805230237696, 1156831381426176, 3470494144278528 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also real parts of 3^n*(1+i)^n, where i=sqrt(-1). If |a(n)| > 0 then it is in A130505. LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-18). FORMULA G.f.: (1-3*x)/(1-6*x+18*x^2). a(n) = 3^n*A146559(n) = (1/2)*((3+3*i)^n+(3-3*i)^n), where i=sqrt(-1). a(n) = 6*a(n-1)-18*a(n-2) for n>1. a(n) = (3*sqrt(2))^n*cos(pi*n/4). a(4k+2) = 0, a(4k+1) = 3*a(4k) = 18*a(4k-1) = 3*(-324)^k. G.f.: W(0)/2, where W(k) = 1 + 1/(1 - x*(3*k+3)/(x*(3*k+6) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013 MATHEMATICA CoefficientList[Series[(1 - 3 x)/(1 - 6 x + 18 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 26 2013 *) LinearRecurrence[{6, -18}, {1, 3}, 40] (* Harvey P. Dale, Jul 27 2021 *) PROG (PARI) Vec((1-3*x)/(1-6*x+18*x^2) +O(x^26)) (Magma) m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)/(1-6*x+18*x^2))); /* or */ &cat[[r, 3*r, 0, -54*r] where r is (-324)^n: n in [0..6]]; (Maxima) makelist(coeff(taylor((1-3*x)/(1-6*x+18*x^2), x, 0, n), x, n), n, 0, 25); (Magma) I:=[1, 3]; [n le 2 select I[n] else 6*Self(n-1)-18*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 26 2013 CROSSREFS Cf. A066771, A121622, A130505. Sequence in context: A177698 A009786 A012738 * A271762 A264882 A012759 Adjacent sequences: A193407 A193408 A193409 * A193411 A193412 A193413 KEYWORD sign,easy AUTHOR Bruno Berselli, Aug 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 21:27 EDT 2024. Contains 374875 sequences. (Running on oeis4.)