login
A193386
Number of even divisors of phi(n).
3
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 4, 2, 3, 3, 4, 2, 2, 3, 4, 4, 3, 4, 4, 3, 4, 4, 4, 4, 6, 4, 6, 3, 6, 4, 6, 4, 4, 4, 6, 2, 2, 4, 4, 4, 5, 6, 4, 3, 6, 6, 6, 4, 2, 4, 8, 4, 6, 5, 8, 4, 4, 5, 4, 6, 4, 6, 9, 6, 6, 6, 8, 6, 4, 5, 4, 6, 2, 6, 6, 4, 6, 6, 6, 6, 9, 4, 8, 2, 9, 5, 10, 4, 8, 6, 6, 5, 4, 8, 8
OFFSET
1,5
LINKS
FORMULA
a(n) = A183063(A000010(n)) = A062821(n) - A193453(n). - Antti Karttunen, Dec 04 2017
EXAMPLE
a(13) = 4 because phi(13) = 12 and the 4 even divisors are { 2, 4, 6, 12}.
MATHEMATICA
f[n_] := Block[{d = Divisors[EulerPhi[n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}]
(* Second program: *)
Array[DivisorSum[EulerPhi@ #, 1 &, EvenQ] &, 105] (* Michael De Vlieger, Dec 04 2017 *)
PROG
(PARI) A193386(n) = sumdiv(eulerphi(n), d, 1-(d%2)); \\ Antti Karttunen, Dec 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 25 2011
EXTENSIONS
More terms from Antti Karttunen, Dec 04 2017
STATUS
approved