The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193345 Digits occurring in A173616. 0
 1, 1, 7, 8, 7, 0, 1, 9, 7, 2, 3, 0, 8, 5, 5, 1, 9, 6, 5, 4, 6, 3, 8, 8, 0, 5, 5, 0, 3, 2, 7, 9, 6, 8, 6, 7, 5, 0, 4, 9, 5, 0, 5, 9, 9, 0, 5, 2, 5, 3, 3, 6, 6, 3, 4, 8, 2, 7, 8, 0, 0, 9, 0, 9, 4, 8, 5, 0, 3, 4, 4, 4, 8, 7, 2, 2, 9, 7, 9, 3, 7, 7, 7, 3, 8, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) = A173616(n) - 10*A173616(n-1). This is the 10-adic integer x such that x^9 == (10^n-9) mod 10^n for all n. It is the 10's complement of A225458. - Aswini Vaidyanathan, May 11 2013 LINKS Table of n, a(n) for n=1..86. EXAMPLE 1111^1111=.........8711; 111^111=........711; 10^(1-4)(8711-711)=8 ==> a(4)=8 Comment from Aswini Vaidyanathan, May 11 2013: 1^9 == 1 (mod 10). 11^9 == 91 (mod 100). 711^9 == 991 (mod 1000). 8711^9 == 9991 (mod 10000). 78711^9 == 99991 (mod 100000). 78711^9 == 999991 (mod 1000000). MATHEMATICA repunit[n_] := Sum[10^i, {i, 0, n-1}]; a[n_] := 10^(1-n)(PowerMod[repunit[n], repunit[n], 10^n] - PowerMod[repunit[n-1], repunit[n-1], 10^(n-1)]); Table[a[n], {n, 200}] PROG (PARI) n=0; for(i=1, 100, m=(10^i-9); for(x=0, 9, if(((n+(x*10^(i-1)))^9)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break))) (From Aswini Vaidyanathan, May 11 2013) CROSSREFS Sequence in context: A244263 A288023 A020506 * A197822 A055060 A010515 Adjacent sequences: A193342 A193343 A193344 * A193346 A193347 A193348 KEYWORD nonn,base,easy AUTHOR José María Grau Ribas, Jul 23 2011 EXTENSIONS Edited by N. J. A. Sloane, May 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 13:32 EST 2023. Contains 367419 sequences. (Running on oeis4.)