This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055060 Decimal expansion of Komornik-Loreti constant. 3
 1, 7, 8, 7, 2, 3, 1, 6, 5, 0, 1, 8, 2, 9, 6, 5, 9, 3, 3, 0, 1, 3, 2, 7, 4, 8, 9, 0, 3, 3, 7, 0, 0, 8, 3, 8, 5, 3, 3, 7, 9, 3, 1, 4, 0, 2, 9, 6, 1, 8, 1, 0, 9, 9, 7, 7, 8, 4, 7, 8, 1, 4, 7, 0, 5, 0, 5, 5, 5, 7, 4, 9, 1, 7, 5, 0, 6, 0, 5, 6, 8, 6, 9, 9, 1, 3, 1, 0, 0, 1, 8, 6, 3, 4, 0, 7, 5, 3, 3, 3, 0, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS J.-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental J.-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly, 107 (No. 5, May, 2000), 448-449. Vilmos Komornik and Paola Loreti, Unique Developments in Non-Integer Bases, Amer. Math. Monthly, Vol. 105, No. 7 (Aug. - Sep., 1998), pp. 636-639. Vilmos Komornik, Derong Kong, Bases with two expansions, arXiv:1705.00473 [math.NT], 2017. Eric Weisstein's World of Mathematics, Komornik-Loreti Constant FORMULA This number q (say) is defined by 1 = Sum_{n >= 1} A010060(n)/q^n. EXAMPLE 1.787231650... MATHEMATICA First[ RealDigits[q /. FindRoot[ Sum[ Mod[ DigitCount[n, 2, 1], 2]/q^n, {n, 1, 2000}] == 1, {q, 1.8}, WorkingPrecision -> 120], 10, 102]](* Jean-François Alcover, Jun 11 2012, after PARI *) PROG (PARI) solve(q=1.7, 1.8, sum(n=1, 2000, (subst(Pol(binary(n)), x, 1)%2)/q^n)-1) CROSSREFS The continued-fraction expansion of this number is in A080890. Sequence in context: A020506 A193345 A197822 * A010515 A021131 A220610 Adjacent sequences:  A055057 A055058 A055059 * A055061 A055062 A055063 KEYWORD nonn,cons,easy AUTHOR N. J. A. Sloane, Jun 11 2000 EXTENSIONS More terms from Ralf Stephan, Mar 30 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 00:25 EDT 2018. Contains 313782 sequences. (Running on oeis4.)