login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055060
Decimal expansion of Komornik-Loreti constant.
3
1, 7, 8, 7, 2, 3, 1, 6, 5, 0, 1, 8, 2, 9, 6, 5, 9, 3, 3, 0, 1, 3, 2, 7, 4, 8, 9, 0, 3, 3, 7, 0, 0, 8, 3, 8, 5, 3, 3, 7, 9, 3, 1, 4, 0, 2, 9, 6, 1, 8, 1, 0, 9, 9, 7, 7, 8, 4, 7, 8, 1, 4, 7, 0, 5, 0, 5, 5, 5, 7, 4, 9, 1, 7, 5, 0, 6, 0, 5, 6, 8, 6, 9, 9, 1, 3, 1, 0, 0, 1, 8, 6, 3, 4, 0, 7, 5, 3, 3, 3, 0, 2
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 438-439.
LINKS
Pieter Allaart, and Derong Kong, On the smallest base in which a number has a unique expansion, arXiv:2006.07927 [math.NT], 2020.
Jean-Paul Allouche and Michel Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly, Vol. 107, No. 5 (May, 2000), pp. 448-449, preprint.
Vilmos Komornik and Paola Loreti, Unique Developments in Non-Integer Bases, Amer. Math. Monthly, Vol. 105, No. 7 (Aug. - Sep., 1998), pp. 636-639.
Vilmos Komornik and Derong Kong, Bases with two expansions, arXiv:1705.00473 [math.NT], 2017.
Vilmos Komornik, Wolfgang Steiner, and Yuru Zou, Unique double base expansions, arXiv:2209.02373 [math.NT], 2022.
Eric Weisstein's World of Mathematics, Komornik-Loreti Constant.
FORMULA
This number q (say) is defined by 1 = Sum_{n >= 1} A010060(n)/q^n.
The unique positive solution of the equation Product_{k>=0} (1 - 1/q^(2^k)) = (2-q)/(q-1) (Allouche and Cosnard, 2000). - Amiram Eldar, Oct 22 2020
EXAMPLE
1.787231650...
MATHEMATICA
First[ RealDigits[q /. FindRoot[ Sum[ Mod[ DigitCount[n, 2, 1], 2]/q^n, {n, 1, 2000}] == 1, {q, 1.8}, WorkingPrecision -> 120], 10, 102]](* Jean-François Alcover, Jun 11 2012, after PARI *)
PROG
(PARI) solve(q=1.7, 1.8, sum(n=1, 2000, (subst(Pol(binary(n)), x, 1)%2)/q^n)-1)
CROSSREFS
The continued-fraction expansion of this number is in A080890.
Cf. A010060.
Sequence in context: A020506 A193345 A197822 * A010515 A021131 A220610
KEYWORD
nonn,cons,easy
AUTHOR
N. J. A. Sloane, Jun 11 2000
EXTENSIONS
More terms from Ralf Stephan, Mar 30 2003
STATUS
approved