OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 438-439.
LINKS
Pieter Allaart, and Derong Kong, On the smallest base in which a number has a unique expansion, arXiv:2006.07927 [math.NT], 2020.
Jean-Paul Allouche and Michel Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly, Vol. 107, No. 5 (May, 2000), pp. 448-449, preprint.
Vilmos Komornik and Paola Loreti, Unique Developments in Non-Integer Bases, Amer. Math. Monthly, Vol. 105, No. 7 (Aug. - Sep., 1998), pp. 636-639.
Vilmos Komornik and Derong Kong, Bases with two expansions, arXiv:1705.00473 [math.NT], 2017.
Vilmos Komornik, Wolfgang Steiner, and Yuru Zou, Unique double base expansions, arXiv:2209.02373 [math.NT], 2022.
Eric Weisstein's World of Mathematics, Komornik-Loreti Constant.
FORMULA
This number q (say) is defined by 1 = Sum_{n >= 1} A010060(n)/q^n.
The unique positive solution of the equation Product_{k>=0} (1 - 1/q^(2^k)) = (2-q)/(q-1) (Allouche and Cosnard, 2000). - Amiram Eldar, Oct 22 2020
EXAMPLE
1.787231650...
MATHEMATICA
First[ RealDigits[q /. FindRoot[ Sum[ Mod[ DigitCount[n, 2, 1], 2]/q^n, {n, 1, 2000}] == 1, {q, 1.8}, WorkingPrecision -> 120], 10, 102]](* Jean-François Alcover, Jun 11 2012, after PARI *)
PROG
(PARI) solve(q=1.7, 1.8, sum(n=1, 2000, (subst(Pol(binary(n)), x, 1)%2)/q^n)-1)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jun 11 2000
EXTENSIONS
More terms from Ralf Stephan, Mar 30 2003
STATUS
approved