login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193131
Numbers of spanning trees of the complete tripartite graphs K_{n,n,n}.
2
3, 384, 419904, 1610612736, 15000000000000, 277326388342554624, 8964455938423371595776, 464227514732017603087171584, 36132988816414656965872925540352, 4026531840000000000000000000000000000, 618293049656826371620197206797522978209792
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Complete Tripartite Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
a(n) = 3*8^(n-1)*n^(3*n-2).
MAPLE
with(LinearAlgebra):
a:= proc(n) local h, i, M;
M:= Matrix(3*n, shape=symmetric);
for h in [seq(seq([[i, j+n], [i, j+2*n], [i+n, j+2*n]][],
j=1..n), i=1..n)]
do M[h[]]:= -1 od;
for i to 3*n do M[i, i]:= -add(M[i, j], j=1..3*n) od;
Determinant(DeleteColumn(DeleteRow(M, 1), 1))
end:
seq(a(n), n=1..12); # Alois P. Heinz, Jul 18 2011
MATHEMATICA
Table[3 8^(n - 1) n^(3 n - 2), {n, 11}]
PROG
(PARI) a(n)=3*n^(3*n-2)<<(3*n-3) \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
Sequence in context: A317069 A316950 A317730 * A193154 A120061 A187942
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Jul 16 2011
EXTENSIONS
More terms from Alois P. Heinz, Jul 18 2011
STATUS
approved