login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317069
Number of nX5 0..1 arrays with every element unequal to 1, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
1
3, 383, 8529, 241716, 6661787, 183761107, 5070445036, 139901594785, 3860087234371, 106505610289521, 2938649201928749, 81081729176259301, 2237166263329333248, 61726765526429595592, 1703133845995471442911
OFFSET
1,1
COMMENTS
Column 5 of A317072.
LINKS
FORMULA
Empirical: a(n) = 20*a(n-1) +182*a(n-2) +791*a(n-3) -333*a(n-4) -14372*a(n-5) -49319*a(n-6) -24638*a(n-7) +317675*a(n-8) +635800*a(n-9) -1152546*a(n-10) -3421714*a(n-11) +3390250*a(n-12) +7494958*a(n-13) +2936243*a(n-14) +2157463*a(n-15) -18827919*a(n-16) -20079949*a(n-17) +8556321*a(n-18) -53400226*a(n-19) +171453767*a(n-20) -244135614*a(n-21) +509197192*a(n-22) -373008978*a(n-23) -375714920*a(n-24) +785661939*a(n-25) -726123779*a(n-26) +235989917*a(n-27) +325898993*a(n-28) -283937704*a(n-29) -156468371*a(n-30) +436055917*a(n-31) -184015641*a(n-32) -71168273*a(n-33) -58904531*a(n-34) +173076041*a(n-35) -221459916*a(n-36) +148753391*a(n-37) +32189001*a(n-38) -112256290*a(n-39) +63130244*a(n-40) -2378490*a(n-41) -8767330*a(n-42) +3847636*a(n-43) +1336346*a(n-44) -4202520*a(n-45) +1964885*a(n-46) -274000*a(n-47) -147726*a(n-48) +61332*a(n-49) +20430*a(n-50) -10332*a(n-51) -432*a(n-52)
EXAMPLE
Some solutions for n=5
..0..0..0..1..0. .0..0..0..1..0. .0..0..0..1..0. .0..0..0..0..0
..1..0..0..0..0. .1..0..0..0..0. .1..0..0..0..0. .0..1..0..0..1
..0..1..0..1..1. .0..1..1..1..1. .0..0..0..1..1. .1..1..0..1..0
..1..0..0..1..0. .0..0..1..0..0. .1..1..1..0..0. .1..0..0..1..0
..0..1..1..1..1. .1..1..0..1..0. .1..0..1..1..0. .1..0..0..1..1
CROSSREFS
Cf. A317072.
Sequence in context: A305958 A317219 A305689 * A316950 A317730 A193131
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 20 2018
STATUS
approved