login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193040
G.f. A(x) satisfies: 1 = Sum_{n>=0} x^n*A(-x)^A131507(n), where A131507 is defined as "2*n+1 appears n times.".
6
1, 1, 2, 7, 29, 129, 600, 2889, 14293, 72228, 371208, 1934236, 10194853, 54258010, 291175463, 1573878211, 8560931357, 46825444031, 257386132988, 1421034475176, 7876770462043, 43817869686744, 244552276036950, 1368945007588648, 7683977372121530
OFFSET
0,3
COMMENTS
Compare the g.f. to a g.f. C(x) of the Catalan numbers: 1 = Sum_{n>=0} x^n*C(-x)^(2*n+1).
FORMULA
G.f. satisfies: 1-x = Sum_{n>=1} x^(n*(n-1)/2)* (1-x^n)* A(-x)^(2*n-1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 129*x^5 + 600*x^6 +...
The g.f. satisfies:
1 = A(-x) + x*A(-x)^3 + x^2*A(-x)^3 + x^3*A(-x)^5 + x^4*A(-x)^5 + x^5*A(-x)^5 + x^6*A(-x)^7 +...+ x^n*A(-x)^A131507(n) +...
where A131507 begins: [1,3,3,5,5,5,7,7,7,7,9,9,9,9,9,11,...].
The g.f. also satisfies:
1-x = (1-x)*A(-x) + x*(1-x^2)*A(-x)^3 + x^3*(1-x^3)*A(-x)^5 + x^6*(1-x^4)*A(-x)^7 + x^10*(1-x^5)*A(-x)^9 +...
PROG
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(sum(m=1, #A, (-x)^m*Ser(A)^(2*floor(sqrt(2*m)+1/2)-1) ), #A)); if(n<0, 0, A[n+1])}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2011
STATUS
approved