OFFSET
0,3
COMMENTS
Compare the g.f. to a g.f. C(x) of the Catalan numbers: x = Sum_{n>=1} x^n*C(-x)^(2*n-1).
FORMULA
G.f. satisfies: 1 = A(x)/(1 - x^2*A(x)^2) - x*A(x)^4/(1 - x^2*A(x)^4).
G.f. satisfies: A(x) = 1 - x^2*A(x)^2 + x*(1-x)*A(x)^4 + x^2*A(x)^5 - x^3*(1-x)*A(x)^6.
a(n) ~ sqrt((s^4 - 3*r^2*s^6 + 4*r^3*s^6 + 2*r*s^2*(-1 - s^2 + s^3)) / (6*s^2 - 15*r^2*s^4 + 15*r^3*s^4 + r*(-1 - 6*s^2 + 10*s^3))) / (2 * sqrt(Pi) * n^(3/2) * r^n), where r = 0.1106746599331611304198664461476598606151090027202... and s = 1.30776993974681499155955325507126073446958968382... are real roots of the system of equations 1 + r^2*s^5 + (-1 + r)*r^3*s^6 = s + r^2*s^2 + (-1 + r)*r*s^4, r^2*s^4*(5 + 6*(-1 + r)*r*s) = 1 + 2*r^2*s + 4*(-1 + r)*r*s^3. - Vaclav Kotesovec, Oct 18 2020
EXAMPLE
MATHEMATICA
CoefficientList[Series[Root[1 - #1 - x^2*#1^2 + (x - x^2)*#1^4 + x^2*#1^5 + (-x^3 + x^4)*#1^6 &, 1], {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 18 2020 *)
PROG
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=concat(A, 0); A[#A]=polcoeff(sum(m=1, #A, (-x)^m*Ser(A)^((2-m%2)*m)), #A)); if(n<0, 0, A[n+1])}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^4-x^2*(A^2+A^4-A^5)-x^3*A^6+x^4*A^6+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 14 2011
STATUS
approved