login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192924 Constant term in the reduction by (x^2->x+1) of the polynomial p(n,x) defined below at Comments. 2
1, 0, 1, 4, 20, 115, 761, 5723, 48353, 454233, 4701724, 53204955, 653749199, 8670930456, 123500484305, 1880367585200, 30481594476514, 524197712831867, 9532792177527307, 182792169717039937, 3686148742978363201, 77989408383978583425 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The titular polynomial is defined by p(n,x)=n*p(n-1,x)+(x^2)*p(n-2,x), with p(0,x)=1, p(1,x)=x.  For discussions of polynomial reduction, see A192232, A192744, and A192872.

LINKS

Table of n, a(n) for n=0..21.

FORMULA

Conjecture: a(n) +2*(-n+1)*a(n-1) +(n^2-3*n-1)*a(n-2) +3*(n-2)*a(n-3) +a(n-4)=0. - R. J. Mathar, May 08 2014

MATHEMATICA

q = x^2; s = x + 1; z = 22;

p[0, x_] := 1; p[1, x_] := x;

p[n_, x_] := n*p[n - 1, x] + p[n - 2, x]*x^2;

Table[Expand[p[n, x]], {n, 0, 7}]

reduce[{p1_, q_, s_, x_}] :=

FixedPoint[(s PolynomialQuotient @@ #1 +

       PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]

  (* A192924 *)

u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]

  (* A192925 *)

CROSSREFS

Cf. A192232, A192744, A192925.

Sequence in context: A171802 A100034 A341919 * A258664 A231539 A106567

Adjacent sequences:  A192921 A192922 A192923 * A192925 A192926 A192927

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jul 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 16:52 EDT 2022. Contains 354885 sequences. (Running on oeis4.)