login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258664 A total of n married couples, including a mathematician M and his wife, are to be seated at the 2n chairs around a circular table, with no man seated next to his wife. After the ladies are seated at every other chair, M is the first man allowed to choose one of the remaining chairs. The sequence gives the number of ways of seating the other men, with no man seated next to his wife, if M chooses the chair that is 3 seats clockwise from his wife's chair. 10
0, 0, 1, 1, 4, 20, 115, 787, 6184, 54888, 542805, 5916725, 70463900, 910167596, 12672415015, 189181881575, 3014307220880, 51054940726928, 915987174021609, 17352888926841897, 346144782915314740, 7251738265074465220, 159193007549552845339, 3654204694819144118651 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
This is a variation of the classic ménage problem (cf. A000179).
It is known [Riordan, ch. 8, ex. 7(b)] that, after the ladies are seated at every other chair, the number U_n of ways of seating the men in the ménage problem has asymptotic expansion U_n ~ e^(-2)*n!*(1 + Sum_{k>=1}(-1)^k/(k!(n-1)_k)), where (n)_k = n*(n-1)*...*(n-k+1).
Therefore, it is natural to conjecture that a(n) ~ e^(-2)*n!/(n-2)*(1 + Sum_{k>=1}(-1)^k/(k!(n-1)_k)).
REFERENCES
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, chs. 7, 8.
LINKS
Peter J. C. Moses, Seatings for 6 couples
I. Kaplansky and J. Riordan, The problème des ménages, Scripta Math. 12, (1946), 113-124. [Scan of annotated copy]
E. Lucas, Sur le problème des ménages, Théorie des nombres, Paris, 1891, 491-496.
Vladimir Shevelev, Peter J. C. Moses, The ménage problem with a known mathematician, arXiv:1101.5321 [math.CO], 2011, 2015.
Vladimir Shevelev and Peter J. C. Moses, Alice and Bob go to dinner: A variation on menage, INTEGERS, Vol. 16 (2016), #A72.
J. Touchard, Sur un problème de permutations, C.R. Acad. Sci. Paris, 198 (1934), 631-633.
FORMULA
a(n) = Sum_{0<=k<=n-1}(-1)^k*(n-k-1)! * Sum_{max(k-n+2, 0)<=j<=min(k,1)} binomial(2-j, j)*binomial(2*n-k+j-4, k-j).
MATHEMATICA
a[d_, n_]:=If[n<=#-1, 0, Sum[((-1)^k)*(n-k-1)!Sum[Binomial[2#-j-4, j]*Binomial[2(n-#)-k+j+2, k-j], {j, Max[#+k-n-1, 0], Min[k, #-2]}], {k, 0, n-1}]]&[(d+3)/2];
Map[a[3, #]&, Range[25]] (* Peter J. C. Moses, Jun 07 2015 *)
PROG
(PARI) a(n) = sum(k=0, n-1, (-1)^k*(n-k-1)!*sum(j=max(k-n+2, 0), min(k, 1), binomial(2-j, j)*binomial(2*n-k+j-4, k-j))); \\ Michel Marcus, Jun 26 2015
CROSSREFS
Sequence in context: A100034 A341919 A192924 * A231539 A106567 A077445
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 17:49 EDT 2024. Contains 371797 sequences. (Running on oeis4.)