The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192755 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments. 3
 0, 1, 7, 19, 42, 82, 150, 263, 449, 753, 1248, 2052, 3356, 5469, 8891, 14431, 23398, 37910, 61394, 99395, 160885, 260381, 421372, 681864, 1103352, 1785337, 2888815, 4674283, 7563234, 12237658, 19801038, 32038847, 51840041, 83879049 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+5n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744. LINKS FORMULA From R. J. Mathar, May 04 2014: (Start) Conjecture: G.f.: -x*(1+4*x) / ( (x^2+x-1)*(x-1)^2 ). a(n) = A001924(n)+4*A001924(n-1). Partial sums of A192754. (End) MATHEMATICA p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 +        PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]   (* A192754 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]   (* A192755 *) CROSSREFS Cf. A192754, A192744, A192232. Sequence in context: A100620 A002177 A225279 * A141193 A104163 A145993 Adjacent sequences:  A192752 A192753 A192754 * A192756 A192757 A192758 KEYWORD nonn AUTHOR Clark Kimberling, Jul 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 12:19 EDT 2021. Contains 346259 sequences. (Running on oeis4.)