login
A192754
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
3
1, 6, 12, 23, 40, 68, 113, 186, 304, 495, 804, 1304, 2113, 3422, 5540, 8967, 14512, 23484, 38001, 61490, 99496, 160991, 260492, 421488, 681985, 1103478, 1785468, 2888951, 4674424, 7563380, 12237809, 19801194, 32039008, 51840207, 83879220, 135719432
OFFSET
0,2
COMMENTS
The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+5*n+1 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
Conjecture: G.f.: ( 1+4*x ) / ( (x-1)*(x^2+x-1) ), partial sums of A022095. a(n) = A000071(n+3)+4*A000071(n+2). - R. J. Mathar, May 04 2014
a(n) = 8*Fibonacci(n) + 3*Lucas(n) - 5. - Greg Dresden, Oct 10 2020
MATHEMATICA
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192754 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A192755 *)
LinearRecurrence[{2, 0, -1}, {1, 6, 12}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 09 2011
STATUS
approved