

A192587


Monotonic ordering of set S generated by these rules: if x and y are in S and xy1 is a prime, then xy1 is in S, and 2, 4, and 6 are in S.


3



2, 3, 4, 5, 6, 7, 11, 13, 17, 19, 23, 29, 37, 41, 43, 67, 73, 101, 113, 137, 163, 173, 257, 401, 547, 677, 691, 821, 977, 1093, 1381, 2707, 3907, 5413, 5861
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See the discussions at A192476 and A192580.


LINKS

Table of n, a(n) for n=1..35.


MATHEMATICA

start = {2, 4, 6}; primes = Table[Prime[n], {n, 1, 10000}];
f[x_, y_] := If[MemberQ[primes, x*y  1], x*y  1]
b[x_] :=
Block[{w = x},
Select[Union[
Flatten[AppendTo[w,
Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # <
50000 &]];
t = FixedPoint[b, start] (* A192587 *)


CROSSREFS

Cf. A192476, A192580, A192586, A192588.
Sequence in context: A054010 A051948 A193461 * A174323 A103539 A174821
Adjacent sequences: A192584 A192585 A192586 * A192588 A192589 A192590


KEYWORD

nonn,fini,full


AUTHOR

Clark Kimberling, Jul 05 2011


STATUS

approved



