login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192399
G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} x^n * A(x)^n/(1 - x*A(x)^(2*n)).
1
1, 1, 3, 11, 48, 233, 1218, 6722, 38668, 229864, 1403618, 8766186, 55818141, 361499355, 2376956264, 15845876429, 106988044753, 731026642533, 5051920683481, 35296182297157, 249249589433312, 1778775804736254, 12828718640894604
OFFSET
0,3
COMMENTS
Related q-series identity:
Sum_{n>=1} z^n*y*q^n/(1-y*q^(2*n)) = Sum_{n>=1} y^n*z*q^(2*n-1)/(1-z*q^(2*n-1)); here q=A(x), y=x, z=x.
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^(2*n-1)/(1 - x*A(x)^(2*n-1)).
G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n*(n+1)/2) * Sum_{k=0..n-1} A(x)^(-k*(k+1)/2). - Paul D. Hanna, Jul 01 2011
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 48*x^4 + 233*x^5 + 1218*x^6 +...
which satisfies the following relations:
A(x) = 1 + x*A(x)/(1-x*A(x)^2) + x^2*A(x)^2/(1-x*A(x)^4) + x^3*A(x)^3/(1-x*A(x)^6) +...
A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)^3/(1-x*A(x)^3) + x^3*A(x)^5/(1-x*A(x)^5) +...
A(x) = 1 + x*A(x) + x^2*A(x)^3*(1 + 1/A(x)) + x^3*A(x)^6*(1 + 1/A(x) + 1/A(x)^3) + x^4*A(x)^10*(1 + 1/A(x) + 1/A(x)^3 + 1/A(x)^6) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^m/(1-x*A^(2*m)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(2*m-1)/(1-x*A^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m*(m+1)/2)*sum(k=0, m-1, (A+x*O(x^n))^(-k*(k+1)/2) ) ) ); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2011
STATUS
approved