OFFSET
0,2
COMMENTS
Related q-series identity:
Sum_{n>=1} y^n*z*q^(2*n-1)/(1-z*q^(2*n-1)) = Sum_{n>=1} z^n*y*q^n/(1-y*q^(2*n)); here q=x, y=A(x), z=2.
FORMULA
G.f. satisfies: A(x) = 1 + Sum_{n>=1} 2^n*A(x)*x^n/(1 - A(x)*x^(2*n)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 34*x^3 + 140*x^4 + 586*x^5 + 2476*x^6 +...
which satisfies the following relations:
A(x) = 1 + A(x)*2*x/(1-2*x) + A(x)^2*2*x^3/(1-2*x^3) + A(x)^3*2*x^5/(1-2*x^5) +...
A(x) = 1 + 2*A(x)*x/(1-A(x)*x^2) + 4*A(x)*x^2/(1-A(x)*x^4) + 8*A(x)*x^3/(1-A(x)*x^6) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, A^m*2*x^(2*m-1)/(1-2*x^(2*m-1)+x*O(x^n)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2^m*A*x^m/(1-A*x^(2*m)+x*O(x^n)))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2011
STATUS
approved