OFFSET
1,3
COMMENTS
The polynomial p(n,x) is defined by ((x+d)^n-(x-d)^n)/(2d), where d=sqrt(x+1). For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
FORMULA
Conjecture: a(n) = 2*a(n-1)+6*a(n-2)+2*a(n-3)-a(n-4). G.f.: x*(x-1)^2 / ((x+1)^2*(x^2-4*x+1)). - Colin Barker, May 11 2014
EXAMPLE
MATHEMATICA
q[x_] := x + 2; d = Sqrt[x + 1];
p[n_, x_] := ((x + d)^n - (x - d)^ n )/(2 d) (* Cf. A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192376 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192377 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192378 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 29 2011
STATUS
approved