login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A192340
Constant term of the reduction of n-th polynomial at A158985 by x^2->x+1.
2
1, 3, 19, 1091, 4270307, 65975813893475, 15748607358316275150858234851, 897339846665475127909937786392825941994036757434025817827, 2913308988276889310145046342161059349226587591969604604068795694857825566722967409631885309325418272374141705507555
OFFSET
1,2
COMMENTS
For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232.
EXAMPLE
The first three polynomials at A158985 and their reductions are as follows:
p0(x)=1+x -> 1+x
p1(x)=2+2x+x^2 -> 3+3x
p2(x)=5+8x+8x^2+4x^3+x^4 -> 19+27x.
From these, we read
A192340=(1,3,19,...) and A192341=(1,3,27,...)
MATHEMATICA
q[x_] := x + 1;
p[0, x_] := x + 1;
p[n_, x_] := 1 + p[n - 1, x]^2 /; n > 0 (* polynomials defined at A158985 *)
Table[Expand[p[n, x]], {n, 0, 4}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 9}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 9}]
(* A192340 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 9}]
(* A192341 *)
CROSSREFS
Sequence in context: A014015 A114301 A258669 * A326973 A248704 A098796
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 28 2011
STATUS
approved