login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098796
a(n) = (Catalan(P_n-1)+1)/P_n where P_n is the n-th prime and Catalan(k) is the Catalan number binomial(2k, k)/(k+1).
0
1, 1, 3, 19, 1527, 16001, 2079863, 25138879, 3977502767, 9094756956909, 123064080712655, 323237794212444689, 63954318104304685581, 908009997951266138587, 185964440670918582766943, 563569187656087282078158821, 1764211191341056000567768115459
OFFSET
1,3
LINKS
Tamar Friedmann and John R. Harper, On H-Spaces and a Congruence of Catalan Numbers, arXiv preprint arXiv:1612.03837 [math.CO], 2016-2017.
EXAMPLE
a(4) = (132+1)/7 = 19.
MAPLE
with(numtheory): catalan_divise:=proc(n) (binomial(2*n-2, n-1)/n+1)/n end: seq(catalan_divise(ithprime(i)), i=1..20);
MATHEMATICA
a[n_] := With[{p = Prime[n]}, (CatalanNumber[p-1]+1)/p]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Feb 20 2017 *)
CROSSREFS
Sequence in context: A192340 A326973 A248704 * A365579 A120563 A182344
KEYWORD
nonn
AUTHOR
F. Chapoton, Oct 05 2004
STATUS
approved