Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 20 2023 10:32:39
%S 1,1,3,19,1527,16001,2079863,25138879,3977502767,9094756956909,
%T 123064080712655,323237794212444689,63954318104304685581,
%U 908009997951266138587,185964440670918582766943,563569187656087282078158821,1764211191341056000567768115459
%N a(n) = (Catalan(P_n-1)+1)/P_n where P_n is the n-th prime and Catalan(k) is the Catalan number binomial(2k, k)/(k+1).
%H Tamar Friedmann and John R. Harper, <a href="http://arxiv.org/abs/1612.03837">On H-Spaces and a Congruence of Catalan Numbers</a>, arXiv preprint arXiv:1612.03837 [math.CO], 2016-2017.
%e a(4) = (132+1)/7 = 19.
%p with(numtheory): catalan_divise:=proc(n) (binomial(2*n-2,n-1)/n+1)/n end: seq(catalan_divise(ithprime(i)),i=1..20);
%t a[n_] := With[{p = Prime[n]}, (CatalanNumber[p-1]+1)/p]; Table[a[n], {n, 1, 15}] (* _Jean-François Alcover_, Feb 20 2017 *)
%Y Cf. A000108, A000040.
%K nonn
%O 1,3
%A _F. Chapoton_, Oct 05 2004