login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192181
Continued fraction expansion of the smallest real root of x^7-7x+3.
2
-2, 1, 1, 3, 1, 86, 63, 1006, 2, 1, 3, 3, 2, 3, 1, 1, 2, 4, 2, 7, 1, 1, 1, 1, 4, 2, 2, 1, 8, 1, 9, 1, 1, 50, 1, 3, 1, 16, 2, 1, 76, 1, 3, 3, 1, 3, 2, 1, 7, 2, 1, 46, 2, 1, 5, 4, 1, 1, 2, 1, 1, 11, 1, 1, 1, 2, 2, 2, 2, 13, 4, 1, 7, 2, 1, 1, 2, 1, 1, 4, 3, 1, 1, 3, 5, 7, 21, 5, 2, 1, 3, 1, 5, 1, 8, 9, 4, 3, 1
OFFSET
0,1
LINKS
David G. Cantor, Paul H. Galyean and Horst G. Zimmer, A continued fraction algorithm for real algebraic numbers. Math. Comp. 26 (1972), 785-791.
EXAMPLE
-1.4443022027143747.. = -2+1/(1+1/(1+1/(3+1/(1+1/(86+...))))).
MAPLE
Digits := 150 ;
x := -1.44;
for i from 1 to 10 do x := evalf(x-(x^7-7*x+3)/(7*x^6-7)); numtheory[cfrac](x+2, 80, 'quotients') ; end do; # R. J. Mathar, Jun 27 2011
CROSSREFS
Sequence in context: A173937 A046223 A338398 * A073463 A183568 A291958
KEYWORD
sign,cofr
AUTHOR
N. J. A. Sloane, Jun 25 2011
STATUS
approved