login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction expansion of the smallest real root of x^7-7x+3.
2

%I #11 Oct 12 2017 10:52:50

%S -2,1,1,3,1,86,63,1006,2,1,3,3,2,3,1,1,2,4,2,7,1,1,1,1,4,2,2,1,8,1,9,

%T 1,1,50,1,3,1,16,2,1,76,1,3,3,1,3,2,1,7,2,1,46,2,1,5,4,1,1,2,1,1,11,1,

%U 1,1,2,2,2,2,13,4,1,7,2,1,1,2,1,1,4,3,1,1,3,5,7,21,5,2,1,3,1,5,1,8,9,4,3,1

%N Continued fraction expansion of the smallest real root of x^7-7x+3.

%H David G. Cantor, Paul H. Galyean and Horst G. Zimmer, <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0330118-4">A continued fraction algorithm for real algebraic numbers</a>. Math. Comp. 26 (1972), 785-791.

%e -1.4443022027143747.. = -2+1/(1+1/(1+1/(3+1/(1+1/(86+...))))).

%p Digits := 150 ;

%p x := -1.44;

%p for i from 1 to 10 do x := evalf(x-(x^7-7*x+3)/(7*x^6-7)); numtheory[cfrac](x+2,80,'quotients') ; end do; # _R. J. Mathar_, Jun 27 2011

%Y Cf. A192182, A192183.

%K sign,cofr

%O 0,1

%A _N. J. A. Sloane_, Jun 25 2011