login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073463 Triangle of number of partitions of 2n into powers of 2 where the largest part is 2^k. 1
1, 1, 1, 1, 2, 1, 1, 3, 2, 0, 1, 4, 4, 1, 0, 1, 5, 6, 2, 0, 0, 1, 6, 9, 4, 0, 0, 0, 1, 7, 12, 6, 0, 0, 0, 0, 1, 8, 16, 10, 1, 0, 0, 0, 0, 1, 9, 20, 14, 2, 0, 0, 0, 0, 0, 1, 10, 25, 20, 4, 0, 0, 0, 0, 0, 0, 1, 11, 30, 26, 6, 0, 0, 0, 0, 0, 0, 0, 1, 12, 36, 35, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 42, 44 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

In the recurrence T(n,k)=T(n-1,k)+T([n/2],k-1): T(n-1,k) represents the partitions where the smallest part is 1 and T([n/2],k-1) those where it is not.

LINKS

Table of n, a(n) for n=0..94.

H. Bottomley, Illustration of initial terms

FORMULA

T(n, k) = T(n-1, k)+T([n/2], k-1) starting with T(n, 0)=1 and T(0, k)=0 for k>0.

EXAMPLE

Rows start:

  1;

  1, 1;

  1, 2, 1;

  1, 3, 2, 0;

  1, 4, 4, 1, 0;

  1, 5, 6, 2, 0, 0;

  ...

CROSSREFS

Columns include A000012, A000027, A002620, A008804. Subsequent columns start like A000123 (offset). Row sums are A000123.

Sequence in context: A173937 A046223 A192181 * A183568 A291958 A127948

Adjacent sequences:  A073460 A073461 A073462 * A073464 A073465 A073466

KEYWORD

easy,nonn,tabl

AUTHOR

Henry Bottomley, Aug 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 09:46 EDT 2018. Contains 313860 sequences. (Running on oeis4.)