This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073463 Triangle of number of partitions of 2n into powers of 2 where the largest part is 2^k. 1
 1, 1, 1, 1, 2, 1, 1, 3, 2, 0, 1, 4, 4, 1, 0, 1, 5, 6, 2, 0, 0, 1, 6, 9, 4, 0, 0, 0, 1, 7, 12, 6, 0, 0, 0, 0, 1, 8, 16, 10, 1, 0, 0, 0, 0, 1, 9, 20, 14, 2, 0, 0, 0, 0, 0, 1, 10, 25, 20, 4, 0, 0, 0, 0, 0, 0, 1, 11, 30, 26, 6, 0, 0, 0, 0, 0, 0, 0, 1, 12, 36, 35, 10, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 42, 44 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS In the recurrence T(n,k)=T(n-1,k)+T([n/2],k-1): T(n-1,k) represents the partitions where the smallest part is 1 and T([n/2],k-1) those where it is not. LINKS H. Bottomley, Illustration of initial terms FORMULA T(n, k) = T(n-1, k)+T([n/2], k-1) starting with T(n, 0)=1 and T(0, k)=0 for k>0. EXAMPLE Rows start:   1;   1, 1;   1, 2, 1;   1, 3, 2, 0;   1, 4, 4, 1, 0;   1, 5, 6, 2, 0, 0;   ... CROSSREFS Columns include A000012, A000027, A002620, A008804. Subsequent columns start like A000123 (offset). Row sums are A000123. Sequence in context: A173937 A046223 A192181 * A183568 A291958 A127948 Adjacent sequences:  A073460 A073461 A073462 * A073464 A073465 A073466 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Aug 02 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 23:03 EST 2018. Contains 317427 sequences. (Running on oeis4.)