OFFSET
1,2
COMMENTS
Previous name was: 1-sequence of reduction of Lucas sequence by x^2 -> x+1.
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Empirical g.f. and recurrence: x^2*(3-2*x)/(1-3*x+3*x^3-x^4), a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4). - Colin Barker, Feb 08 2012
a(n) = Fibonacci(2*n) - (n mod 2). - Peter Luschny, Mar 10 2015
EXAMPLE
(See A192243.)
MAPLE
a := n -> combinat[fibonacci](2*n)-(n mod 2):
seq(a(n), n=1..29); # Peter Luschny, Mar 10 2015
MATHEMATICA
c[n_] := LucasL[n];
Table[c[n], {n, 1, 15}]
q[x_] := x + 1; p[0, x_] := 1;
p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1] reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192243 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192068 *)
(* Peter J. C. Moses, Jun 26 2011 *)
Table[Fibonacci[2n]-Mod[n, 2], {n, 30}] (* Harvey P. Dale, Jul 11 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 26 2011
EXTENSIONS
New name from Peter Luschny, Mar 10 2015
STATUS
approved