login
A191842
Ordered sums f+3*g, where f and g are Fibonacci numbers (A000045).
5
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 36, 37, 40, 41, 42, 43, 44, 45, 47, 49, 52, 58, 60, 61, 64, 65, 66, 68, 70, 71, 73, 76, 79, 84, 92, 94, 95, 97, 98, 103, 104, 105, 107, 110, 113, 115, 118, 123, 128
OFFSET
1,1
MATHEMATICA
c = 1; d = 3; f[n_] := Fibonacci[n];
g[n_] := c*f[n]; h[n_] := d*f[n];
t[i_, j_] := h[i] + g[j];
u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
v = Union[Flatten[u ]] (* A191842 *)
t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
v1 = Union[Flatten[u1 ]] (* A191843: f(i)-3*f(j) *)
g1[n_] := d*f[n]; h1[n_] := c*f[n];
t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
v2 = Union[Flatten[u2 ]] (* A191844: 3*f(i)-f(j) *)
v3 = Union[v1, v2] (* A191845 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 17 2011
STATUS
approved