login
A111222
Integers that can be expressed as the sum of 4 factorials.
1
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 19, 20, 24, 27, 28, 29, 30, 32, 33, 34, 37, 38, 42, 50, 51, 52, 55, 56, 60, 73, 74, 78, 96, 123, 124, 125, 126, 128, 129, 130, 133, 134, 138, 146, 147, 148, 151, 152, 156, 169, 170, 174, 192, 242, 243, 244, 247, 248, 252, 265
OFFSET
0,1
FORMULA
n = a! + b! + c! + d! being a, b, c, d positive integers or zeros
EXAMPLE
Example: 0! + 1! + 3! + 4! = 1 + 1 + 6 + 24 = 32
MATHEMATICA
nmax = 266; k = 1; s = 0; While[k! <= nmax, s += x^(k!); k++ ]; Select[Range[nmax], Coefficient[s^4, x, # ] > 0 &] (* Ray Chandler, Nov 01 2005 *)
CROSSREFS
Cf. A066847.
Sequence in context: A063713 A026462 A039230 * A037357 A191842 A299544
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Extended by Ray Chandler, Nov 01 2005
STATUS
approved