login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191112
First occurrence of the n-th odd prime in A190911.
1
1, 3, 12, 42, 165, 3000, 2142, 39270, 838695, 2185092, 194467182, 649154415, 33547795512, 40753286805, 24563658547425, 1364238471026340, 2297427262231332, 1662166966658270160, 783186317937632697, 404695317060455732220, 162293533192142440777455, 634357227813958501290435
OFFSET
1,2
FORMULA
a(n) = 0 (mod 3) for n >= 2.
a(n) = 0 or 12 (mod 15) for n >= 3.
MAPLE
A190911 := proc(n) option remember: local k: for k from 3 by 2 do if(gcd(k, n)=1 and gcd(k, n+3)=1)then return k: fi: od: end: for n from 2 do p:=ithprime(n): for k from 1 do if(A190911(k)=p)then print(k): break: fi: od: od:
PROG
(PARI) A190911(n)=n*=n+3; forprime(p=3, , if(n%p, return(p)))
{my(v=[0], t=3, p=5);
print1("1, 3");
forprime(q=7, 1000,
u=vector(#v);
for(i=1, #u,
u[i]=lift(chinese(Mod(v[i], t), Mod( 0, p)));
v[i]=lift(chinese(Mod(v[i], t), Mod(-3, p)))
);
v=vecsort(concat(u, v));
for(j=2, #v,
if(A190911(v[j])==q,
print1(", "v[j]);
break
)
);
t*=p;
p=q
)} \\ Charles R Greathouse IV, Oct 09 2011
CROSSREFS
Cf. A190911.
Sequence in context: A094970 A065179 A048121 * A066987 A366617 A375203
KEYWORD
nonn
AUTHOR
Nathaniel Johnston, May 26 2011
EXTENSIONS
a(11)-a(22) from Charles R Greathouse IV, Oct 09 2011
STATUS
approved