login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190585 E.g.f. Product_{n>=1} (1 - x^n)^(-u(n)/n) where u(n) is the unitary Moebius function (A076479). 4
1, 1, 1, 1, -5, -29, -89, -209, -9239, -120455, -801359, -3674879, 15450931, 505760971, 4925214295, 30957618511, -3280733667119, -49063880680079, -327527326905119, -1087577476736255, 97366167074820331, 1723137650565888691, 13360549076712501511 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The corresponding sequence for the (usual) Moebius function is the constant sequence a(n)=1 (A000012).

Log(e.g.f.) = x - (1/4)*x^4 - (1/4)*x^8 - (1/9)*x^9 - (3/16)*x^16 - (1/25)*x^25 - (2/27)*x^27 - (1/8)*x^32 + (1/36)*x^36 - (1/49)*x^49 - (5/64)*x^64 +- ...; the corresponding function for the usual Moebius function is log(exp(x)) = x.

Log(g.f.) = x + (1/2)*x^2 + (1/3)*x^3 - (23/4)*x^4 - (119/5)*x^5 - (359/6)*x^6 - (839/7)*x^7 +- ...; the corresponding function for the usual Moebius function if Sum_{n>=1} h(n)*x^n where h(n) = Sum_{k=1..n} 1/k is a harmonic number.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..65

PROG

(PARI)

N=66;  /* that many terms */

/* First compute the unitary Moebius function */

mu=vector(N); mu[1]=1;

{ for (n=2, N,

    s = 0;

    fordiv (n, d,

        if (gcd(d, n/d)!=1, next() ); /* unitary divisors only */

        s += mu[d];

    );

    mu[n] = -s;

); };

egf=prod(n=1, N, (1-x^n)^(-mu[n]/n)); /* = 1 +x +1/2*x^2 +1/6*x^3 -5/24*x^4 +-... */

Vec(serlaplace(egf)) /* show terms */

CROSSREFS

Cf. A076479.

Sequence in context: A111937 A215850 A308396 * A197276 A211062 A330700

Adjacent sequences:  A190582 A190583 A190584 * A190586 A190587 A190588

KEYWORD

sign

AUTHOR

Joerg Arndt, May 13 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 03:09 EDT 2021. Contains 345351 sequences. (Running on oeis4.)