login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190586
Number of two-sided n-step prudent walks ending on the top side of their box, avoiding two or more consecutive west steps and south steps.
2
1, 3, 6, 15, 35, 83, 195, 460, 1085, 2560, 6039, 14247, 33613, 79306, 187114, 441477, 1041626, 2457630, 5798569, 13681202, 32279488, 76160166, 179691649, 423961718, 1000285928, 2360046161, 5568211498, 13137414580, 30995819288, 73129978187, 172538870438
OFFSET
0,2
LINKS
Shanzhen Gao, Keh-Hsun Chen, Tackling Sequences From Prudent Self-Avoiding Walks, FCS'14, The 2014 International Conference on Foundations of Computer Science.
FORMULA
Recurrence: (n+1)*(7*n^2 - 194*n + 926)*a(n) = n*(42*n^2 - 1143*n + 5320)*a(n-1) - (84*n^3 - 2349*n^2 + 13043*n - 13734)*a(n-2) + (77*n^3 - 2267*n^2 + 15130*n - 27824)*a(n-3) - (63*n^3 - 1893*n^2 + 13180*n - 24672)*a(n-4) - (7*n^3 - 313*n^2 + 3298*n - 8548)*a(n-5) + (77*n^3 - 2309*n^2 + 16800*n - 34964)*a(n-6) + 2*(14*n^3 - 563*n^2 + 6962*n - 24347)*a(n-7) + (49*n^3 - 1456*n^2 + 10086*n - 21316)*a(n-8) - (7*n^3 - 208*n^2 + 1687*n - 2950)*a(n-9) - 6*(7*n^3 - 236*n^2 + 2187*n - 5968)*a(n-10) - 2*(7*n^3 - 250*n^2 + 2526*n - 7744)*a(n-11) + 2*(n-10)*(7*n^2 - 180*n + 739)*a(n-12). - Vaclav Kotesovec, Sep 03 2014
G.f.: 1/(2*t*(1-2*t-t^2+t^3)*(1-2*t-2*t^3))*((1-2*t)*(1-t)*sqrt((1-t-t^3)^2-4*t^4)-(1+t)*(1-7*t+14*t^2-11*t^3+10*t^4-4*t^5)), see sequence 11 in link. - Michel Marcus, May 06 2015
EXAMPLE
a(2) = 6 since there are 6 such walks: WN, NW, EN, NE, EE, NN.
MAPLE
b:= proc(d, i, n, x, y) option remember;
`if`(n=0, `if`(y=0, 1, 0),
`if`(d<>3, b(1, x=0, n-1, max(x-1, 0), y), 0) +
`if`(d<>4, b(2, y=0, n-1, x, max(y-1, 0)), 0) +
`if`(d=0 or d=2 and i, b(3, false, n-1, x+1, y), 0) +
`if`(d=0 or d=1 and i, b(4, false, n-1, x, y+1), 0))
end:
a:= n-> b(0, false, n, 0, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 09 2011
MATHEMATICA
CoefficientList[Series[1/(2 x (1-2 x - x^2 + x^3) (1 - 2 x - 2 x^3)) ((1 - 2 x) (1 - x) Sqrt[(1 - x - x^3)^2 - 4 x^4] - (1 + x) (1 - 7 x + 14 x^2 - 11 x^3 + 10 x^4 - 4 x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
b[d_, i_, n_, x_, y_] := b[d, i, n, x, y] = If[n == 0, If[y == 0, 1, 0], If[d != 3, b[1, x == 0, n-1, Max[x-1, 0], y], 0] + If[d != 4, b[2, y == 0, n-1, x, Max[y-1, 0]], 0] + If[d == 0 || d == 2 && i, b[3, False, n-1, x+1, y], 0] + If[d == 0 || d == 1 && i, b[4, False, n-1, x, y+1], 0]]; a[n_] := b[0, False, n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A027600 A024416 A076375 * A113225 A298539 A209450
KEYWORD
nonn,walk
AUTHOR
Shanzhen Gao, May 13 2011
EXTENSIONS
More terms from Alois P. Heinz, Jun 09 2011
STATUS
approved