login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190576
a(n) = n^2 + 5*n - 5.
3
1, 9, 19, 31, 45, 61, 79, 99, 121, 145, 171, 199, 229, 261, 295, 331, 369, 409, 451, 495, 541, 589, 639, 691, 745, 801, 859, 919, 981, 1045, 1111, 1179, 1249, 1321, 1395, 1471, 1549, 1629, 1711, 1795, 1881, 1969, 2059, 2151, 2245, 2341
OFFSET
1,2
COMMENTS
Also a(n) = n^2 + 9*n + 9 if the offset is changed to -1. - R. J. Mathar, May 18 2011
FORMULA
G.f.: x*(-1 - 6*x + 5*x^2) / (x-1)^3. - R. J. Mathar, May 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=9, a(3)=19. - Harvey P. Dale, May 28 2015
Sum_{n>=1} 1/a(n) = 199/495 + Pi*tan(3*sqrt(5)*Pi/2)/(3*sqrt(5)). - Amiram Eldar, Jan 18 2021
MATHEMATICA
k = 5; Table[n^2 + k*n - k, {n, 100}]
LinearRecurrence[{3, -3, 1}, {1, 9, 19}, 50] (* Harvey P. Dale, May 28 2015 *)
PROG
(Magma) [n^2+5*n-5: n in [1..50]]; // Vincenzo Librandi, Sep 30 2011
(PARI) a(n)=n^2+5*n-5 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. sequences of the form n^2 + k*n - k : A000290 (k=0), A028387 (k=1), A028872 (k=2), A082111 (k=3), A028884 (k=4).
Sequence in context: A189798 A056126 A190513 * A250663 A274590 A051811
KEYWORD
nonn,easy
AUTHOR
STATUS
approved