login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190382
Numbers with prime factorization p^2*q^2*r^2*s^3 where p, q, r, and s are distinct primes.
4
88200, 132300, 217800, 220500, 304200, 308700, 326700, 426888, 456300, 520200, 544500, 596232, 640332, 649800, 760500, 780300, 894348, 952200, 974700, 1019592, 1185800, 1197900, 1273608, 1300500, 1428300, 1472328, 1494108, 1513800
OFFSET
1,1
FORMULA
Sum_{n>=1} 1/a(n) = (P(2)^3*P(3) - 3*P(2)^2*P(5) - 3*P(2)*P(3)*P(4) + 6*P(2)*P(7) + 2*P(3)*P(6) + 3*P(4)*P(5) - 6*P(9))/6 = 0.00010783911499432484110..., where P is the prime zeta function. - Amiram Eldar, Mar 07 2024
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 2, 2, 3}; Select[Range[2000000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3); forprime(p=2, sqrtnint(lim\900, 3), t1=p^3; forprime(q=2, sqrtint(lim\(36*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2, sqrtint(lim\(4*t2)), if(r==p || r==q, next); t3=r^2*t2; forprime(s=2, sqrtint(lim\t3), if(s==p || s==q || s==r, next); listput(v, t3*s^2))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
KEYWORD
nonn
AUTHOR
STATUS
approved