login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180106
Semiprimes which are the sum of three distinct positive cubes of semiprime numbers in two or more distinct ways.
1
88073, 195905, 196057, 196841, 205102, 211466, 610903, 747209, 809966, 1078622, 1543267, 1828441, 1967402, 2143783, 2312029, 2803501, 3055258, 3108673, 3244466, 3477629, 3662567, 4237577, 4770137, 5741074, 5835593, 5908889, 7189265, 7497118, 8438249, 8742781
OFFSET
1,1
COMMENTS
610903 = 74^3+55^3+34^3 = 82^3+39^3+6^3.
88073 = 29*3037 = 21^3+33^3+35^3 = 25^3+26^3+38^3. - Chai Wah Wu, May 20 2017
MATHEMATICA
f[n_] := PrimeOmega@ n == 2; lst = {}; Do[Do[Do[If[And[f[a], f[b], f[c], f[p = a^3 + b^3 + c^3]], AppendTo[lst, p]], {c, b - 1, 1, -1}], {b, a - 1, 1, -1}], {a, 200}]; lst1 = Sort@ lst; lst = {}; Do[If[lst1[[n]] == lst1[[n + 1]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1] - 1}]; lst (* Corrected by Michael De Vlieger, May 21 2017 *)
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms corrected by Chai Wah Wu, May 20 2017
STATUS
approved