login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190147
Decimal expansion of Sum{k=1..infinity}(1/Sum{j=1..k} j^j’), where n’ is the arithmetic derivative of n.
5
1, 5, 0, 7, 8, 1, 0, 6, 6, 7, 6, 2, 2, 8, 9, 8, 2, 8, 3, 8, 3, 3, 1, 5, 3, 9, 0, 3, 7, 6, 5, 3, 7, 7, 7, 2, 7, 2, 4, 7, 3, 4, 6, 8, 8, 5, 1, 9, 3, 8, 9, 5, 5, 8, 5, 5, 3, 1, 9, 1, 3, 9, 0, 8, 6, 3, 0, 1, 2, 5, 3, 8, 1, 3, 3, 9, 5, 8, 9, 8, 9, 1, 1, 6, 7, 1, 4, 7, 5, 0, 5, 2, 5, 1, 0, 6, 3, 0, 6, 1, 3, 1, 7, 1, 2, 7, 1, 9, 4, 9, 9, 2, 2, 7, 3, 6, 6, 2, 4, 9
OFFSET
1,2
EXAMPLE
1/1^1’+1/(1^1’+2^2’)+1/(1^1’+2^2’+3^3’)+1/(1^1’+2^2’+3^3’+4^4’)+... = 1+1/3+1/6+1/262+... = 1.50781066762289...
MAPLE
with(numtheory);
P:=proc(i)
local a, b, f, n, p, pfs;
a:=0; b:=0;
for n from 1 by 1 to i do
pfs:=ifactors(n)[2];
f:=n*add(op(2, p)/op(1, p), p=pfs);
b:=b+n^f; a:=a+1/b;
od;
print(evalf(a, 300));
end:
P(1000);
MATHEMATICA
digits = 120; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; p[m_] := p[m] = Sum[1/Sum[j^d[j], {j, 1, k}], {k, 1, m}] // RealDigits[#, 10, digits]& // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* Jean-François Alcover, Feb 21 2014 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, May 05 2011
STATUS
approved