login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum{k=1..infinity}(1/Sum{j=1..k} j^j’), where n’ is the arithmetic derivative of n.
5

%I #11 Feb 21 2014 04:55:34

%S 1,5,0,7,8,1,0,6,6,7,6,2,2,8,9,8,2,8,3,8,3,3,1,5,3,9,0,3,7,6,5,3,7,7,

%T 7,2,7,2,4,7,3,4,6,8,8,5,1,9,3,8,9,5,5,8,5,5,3,1,9,1,3,9,0,8,6,3,0,1,

%U 2,5,3,8,1,3,3,9,5,8,9,8,9,1,1,6,7,1,4,7,5,0,5,2,5,1,0,6,3,0,6,1,3,1,7,1,2,7,1,9,4,9,9,2,2,7,3,6,6,2,4,9

%N Decimal expansion of Sum{k=1..infinity}(1/Sum{j=1..k} j^j’), where n’ is the arithmetic derivative of n.

%e 1/1^1’+1/(1^1’+2^2’)+1/(1^1’+2^2’+3^3’)+1/(1^1’+2^2’+3^3’+4^4’)+... = 1+1/3+1/6+1/262+... = 1.50781066762289...

%p with(numtheory);

%p P:=proc(i)

%p local a,b,f,n,p,pfs;

%p a:=0; b:=0;

%p for n from 1 by 1 to i do

%p pfs:=ifactors(n)[2];

%p f:=n*add(op(2,p)/op(1,p),p=pfs);

%p b:=b+n^f; a:=a+1/b;

%p od;

%p print(evalf(a,300));

%p end:

%p P(1000);

%t digits = 120; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; p[m_] := p[m] = Sum[1/Sum[j^d[j], {j, 1, k}], {k, 1, m}] // RealDigits[#, 10, digits]& // First; p[digits]; p[m = 2*digits]; While[p[m] != p[m/2], m = 2*m]; p[m] (* _Jean-François Alcover_, Feb 21 2014 *)

%Y Cf. A003415, A190144, A190145, A190146.

%K nonn,cons

%O 1,2

%A _Paolo P. Lava_, May 05 2011