login
A190111
Numbers with prime factorization p*q*r*s^2*t^3 (where p, q, r, s, t are distinct primes).
4
27720, 32760, 41580, 42840, 46200, 47880, 49140, 51480, 54600, 57960, 64260, 64680, 67320, 71400, 71820, 72072, 73080, 75240, 76440, 77220, 78120, 79560, 79800, 85800, 86940, 88920, 91080, 93240, 94248, 96600, 99960, 100980, 101640, 103320
OFFSET
1,1
EXAMPLE
From Petros Hadjicostas, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*5*7*11 = 27720;
a(2) = (2^3)*(3^2)*5*7*13 = 32760;
a(3) = (2^2)*(3^3)*5*7*11 = 41580;
a(4) = (2^3)*(3^2)*5*7*17 = 42840;
a(5) = (2^3)*3*(5^2)*7*11 = 46200.
(End)
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 1, 2, 3}; Select[Range[150000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3, t4); forprime(p=2, sqrtnint(lim\420, 3), t1=p^3; forprime(q=2, sqrtint(lim\(30*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2, lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2, lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved