login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190111
Numbers with prime factorization p*q*r*s^2*t^3 (where p, q, r, s, t are distinct primes).
4
27720, 32760, 41580, 42840, 46200, 47880, 49140, 51480, 54600, 57960, 64260, 64680, 67320, 71400, 71820, 72072, 73080, 75240, 76440, 77220, 78120, 79560, 79800, 85800, 86940, 88920, 91080, 93240, 94248, 96600, 99960, 100980, 101640, 103320
OFFSET
1,1
EXAMPLE
From Petros Hadjicostas, Oct 26 2019: (Start)
a(1) = (2^3)*(3^2)*5*7*11 = 27720;
a(2) = (2^3)*(3^2)*5*7*13 = 32760;
a(3) = (2^2)*(3^3)*5*7*11 = 41580;
a(4) = (2^3)*(3^2)*5*7*17 = 42840;
a(5) = (2^3)*3*(5^2)*7*11 = 46200.
(End)
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 1, 2, 3}; Select[Range[150000], f]
PROG
(PARI) list(lim)=my(v=List(), t1, t2, t3, t4); forprime(p=2, sqrtnint(lim\420, 3), t1=p^3; forprime(q=2, sqrtint(lim\(30*t1)), if(q==p, next); t2=q^2*t1; forprime(r=2, lim\(6*t2), if(r==p || r==q, next); t3=r*t2; forprime(s=2, lim\(2*t3), if(s==p || s==q || s==r, next); t4=s*t3; forprime(t=2, lim\t4, if(t==p || t==q || t==r || t==s, next); listput(v, t4*t)))))); Set(v) \\ Charles R Greathouse IV, Aug 25 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved