The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189849 a(0)=1, a(1)=0, a(n) = 4*n*(n-1)*(a(n-1) + 2*(n-1)*a(n-2)). 2
 1, 0, 16, 384, 23040, 2088960, 278323200, 50969640960, 12290021130240, 3774394191052800, 1438421245702963200, 666120016990568448000, 368420070161105761075200, 239869937154980747988172800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The number of ways n couples can sit in rows of two seats with no person next to their partner. a(n)/(2n)! gives the probability of this is and tends to exp(-1/2) as n tends to infinity. LINKS G. C. Greubel, Table of n, a(n) for n = 0..224 FORMULA a(n) = (-2)^n*n!*hypergeom([ -n, 1/2],[],2). a(n) = (n!)^2 times the coefficient of x^n in the expansion of exp(-2*x)/sqrt(1-4*x). a(n) = 2^n*n!*A053871(n). a(n) = A333706(2n,n). - Alois P. Heinz, Apr 10 2020 MAPLE a:= n-> (-2)^n*n!*add((-1/2)^i*binomial(n, i)*(2*i)!/i!, i=0..n): seq(a(n), n=0..20); MATHEMATICA Table[(-2)^n*n!*Sum[(-1/2)^i*Binomial[n, i]*(2*i)!/i!, {i, 0, n}], {n, 1, 20}] RecurrenceTable[{a[0]==1, a[1]==0, a[n]==4n(n-1)(a[n-1]+2(n-1)a[n-2])}, a, {n, 20}] (* Harvey P. Dale, May 02 2012 *) PROG (Maxima) a[0]:1\$ a[1]:0\$ a[n]:=4*n*(n-1)*(a[n-1]+2*(n-1)*a[n-2])\$ makelist(a[n], n, 0, 13); /* Bruno Berselli, May 23 2011 */ (PARI) for(n=0, 30, print1((-2)^n*n!*sum(k=0, n, (-1/2)^k*binomial(n, k)*(2*k)!/k!), ", ")) \\ G. C. Greubel, Jan 13 2018 (Magma) [(-2)^n*Factorial(n)*(&+[(-1/2)^k*Binomial(n, k)*Factorial(2*k)/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jan 13 2018 CROSSREFS Cf. A053871, A333706. Sequence in context: A116166 A034976 A114426 * A051360 A227390 A284854 Adjacent sequences: A189846 A189847 A189848 * A189850 A189851 A189852 KEYWORD nonn,easy AUTHOR Stewart Herring, Apr 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 6 07:07 EST 2023. Contains 360097 sequences. (Running on oeis4.)