login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189849 a(0)=1, a(1)=0, a(n) = 4*n*(n-1)*(a(n-1) + 2*(n-1)*a(n-2)). 2

%I

%S 1,0,16,384,23040,2088960,278323200,50969640960,12290021130240,

%T 3774394191052800,1438421245702963200,666120016990568448000,

%U 368420070161105761075200,239869937154980747988172800

%N a(0)=1, a(1)=0, a(n) = 4*n*(n-1)*(a(n-1) + 2*(n-1)*a(n-2)).

%C The number of ways n couples can sit in rows of two seats with no person next to their partner.

%C a(n)/(2n)! gives the probability of this is and tends to exp(-1/2) as n tends to infinity.

%H G. C. Greubel, <a href="/A189849/b189849.txt">Table of n, a(n) for n = 0..224</a>

%F a(n) = (-2)^n*n!*hypergeom([ -n, 1/2],[],2).

%F a(n) = (n!)^2 times the coefficient of x^n in the expansion of exp(-2*x)/sqrt(1-4*x).

%F a(n) = 2^n*n!*A053871(n).

%F a(n) = A333706(2n,n). - _Alois P. Heinz_, Apr 10 2020

%p a:= n-> (-2)^n*n!*add((-1/2)^i*binomial(n, i)*(2*i)!/i!, i=0..n): seq(a(n), n=0..20);

%t Table[(-2)^n*n!*Sum[(-1/2)^i*Binomial[n,i]*(2*i)!/i!,{i,0,n}],{n,1,20}]

%t RecurrenceTable[{a[0]==1,a[1]==0,a[n]==4n(n-1)(a[n-1]+2(n-1)a[n-2])},a,{n,20}] (* _Harvey P. Dale_, May 02 2012 *)

%o (Maxima) a[0]:1$ a[1]:0$ a[n]:=4*n*(n-1)*(a[n-1]+2*(n-1)*a[n-2])$ makelist(a[n], n, 0, 13); /* _Bruno Berselli_, May 23 2011 */

%o (PARI) for(n=0,30, print1((-2)^n*n!*sum(k=0,n, (-1/2)^k*binomial(n,k)*(2*k)!/k!), ", ")) \\ _G. C. Greubel_, Jan 13 2018

%o (Magma) [(-2)^n*Factorial(n)*(&+[(-1/2)^k*Binomial(n,k)*Factorial(2*k)/Factorial(k): k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Jan 13 2018

%Y Cf. A053871, A333706.

%K nonn,easy

%O 0,3

%A _Stewart Herring_, Apr 29 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)