login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051360
A class of Boolean functions of n variables and rank 4.
1
0, 0, 0, 16, 389, 3112, 16231, 66177, 228438, 697219, 1932601, 4953493, 11892484, 27003029, 58421782, 121154728, 241995312, 467422242, 875997590, 1597434614, 2841382379, 4940146414, 8411111897, 14046656347, 23041951126, 37174397565, 59052693975, 92458885395
OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^12 + 123*n^11 + 6947*n^10 + 238995*n^9 + 5406153*n^8 + 81325989*n^7 + 826126601*n^6 + 6015252225*n^5 + 31515483346*n^4 + 95237254188*n^3 + 64213530552*n^2-798617063520*n-2101517913600)/15!.
G.f.: -x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16) / (x -1)^16. - Colin Barker, Jul 11 2013
MATHEMATICA
CoefficientList[Series[-x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16) / (x -1)^16, {x, 0, 50}], x] (* G. C. Greubel, Oct 07 2017 *)
LinearRecurrence[{16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1}, {0, 0, 0, 16, 389, 3112, 16231, 66177, 228438, 697219, 1932601, 4953493, 11892484, 27003029, 58421782, 121154728}, 40] (* Harvey P. Dale, Sep 04 2021 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(-x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16)/(x -1)^16)) \\ G. C. Greubel, Oct 07 2017
CROSSREFS
Sequence in context: A034976 A114426 A189849 * A227390 A284854 A269412
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda
STATUS
approved