OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^12 + 123*n^11 + 6947*n^10 + 238995*n^9 + 5406153*n^8 + 81325989*n^7 + 826126601*n^6 + 6015252225*n^5 + 31515483346*n^4 + 95237254188*n^3 + 64213530552*n^2-798617063520*n-2101517913600)/15!.
G.f.: -x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16) / (x -1)^16. - Colin Barker, Jul 11 2013
MATHEMATICA
CoefficientList[Series[-x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16) / (x -1)^16, {x, 0, 50}], x] (* G. C. Greubel, Oct 07 2017 *)
LinearRecurrence[{16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1}, {0, 0, 0, 16, 389, 3112, 16231, 66177, 228438, 697219, 1932601, 4953493, 11892484, 27003029, 58421782, 121154728}, 40] (* Harvey P. Dale, Sep 04 2021 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0], Vec(-x^3*(6*x^12 -84*x^11 +535*x^10 -2058*x^9 +5335*x^8 -9813*x^7 +13093*x^6 -12698*x^5 +8799*x^4 -4159*x^3 +1192*x^2 -133*x -16)/(x -1)^16)) \\ G. C. Greubel, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda
STATUS
approved