OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^4+31*n^3+287*n^2+1499*n+2922)/7!.
a(0)=0, a(1)=0, a(2)=0, a(3)=13, a(4)=75, a(5)=263, a(6)=720, a(7)=1688, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+ 8*a(n-7)- a(n-8) [From Harvey P. Dale, Jul 19 2011]
G.f.: x^3*(2*x^4-12*x^3+27*x^2-29*x+13)/(x-1)^8. - Colin Barker, Jul 11 2013
MATHEMATICA
With[{c7=7!}, Table[n(n-1)(n-2)(n^4+31n^3+287n^2+1499n+2922)/c7, {n, 0, 40}]] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 13, 75, 263, 720, 1688}, 41](* Harvey P. Dale, Jul 19 2011 *)
PROG
(Magma) [n*(n-1)*(n-2)*(n^4+31*n^3+287*n^2+1499*n+2922)/Factorial(7): n in [0..35]]; // Vincenzo Librandi, Jul 20 2011
(PARI) for(n=0, 50, print1(n*(n-1)*(n-2)*(n^4 +31*n^3 +287*n^2 +1499*n +2922)/7!, ", ")) \\ G. C. Greubel, Oct 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
More terms from Colin Barker, Jul 11 2013
STATUS
approved