login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051361
A class of Boolean functions of n variables and rank 3.
1
0, 0, 0, 13, 75, 263, 720, 1688, 3550, 6882, 12516, 21615, 35761, 57057, 88244, 132834, 195260, 281044, 396984, 551361, 754167, 1017355, 1355112, 1784156, 2324058, 2997590, 3831100, 4854915, 6103773, 7617285, 9440428, 11624070, 14225528, 17309160, 20946992, 25219381
OFFSET
0,4
REFERENCES
V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
FORMULA
a(n) = n*(n-1)*(n-2)*(n^4+31*n^3+287*n^2+1499*n+2922)/7!.
a(0)=0, a(1)=0, a(2)=0, a(3)=13, a(4)=75, a(5)=263, a(6)=720, a(7)=1688, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+ 8*a(n-7)- a(n-8) [From Harvey P. Dale, Jul 19 2011]
G.f.: x^3*(2*x^4-12*x^3+27*x^2-29*x+13)/(x-1)^8. - Colin Barker, Jul 11 2013
MATHEMATICA
With[{c7=7!}, Table[n(n-1)(n-2)(n^4+31n^3+287n^2+1499n+2922)/c7, {n, 0, 40}]] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 0, 0, 13, 75, 263, 720, 1688}, 41](* Harvey P. Dale, Jul 19 2011 *)
PROG
(Magma) [n*(n-1)*(n-2)*(n^4+31*n^3+287*n^2+1499*n+2922)/Factorial(7): n in [0..35]]; // Vincenzo Librandi, Jul 20 2011
(PARI) for(n=0, 50, print1(n*(n-1)*(n-2)*(n^4 +31*n^3 +287*n^2 +1499*n +2922)/7!, ", ")) \\ G. C. Greubel, Oct 07 2017
CROSSREFS
Sequence in context: A302079 A103968 A073544 * A114070 A005340 A114244
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Goran Kilibarda
EXTENSIONS
More terms from Colin Barker, Jul 11 2013
STATUS
approved