login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189368 a(n) = n + [n*r/s] + [n*t/s]; r=2, s=sqrt(2), t=sqrt(3). 3
3, 6, 10, 13, 18, 21, 24, 28, 32, 36, 39, 42, 46, 50, 54, 57, 61, 65, 68, 72, 75, 79, 83, 86, 90, 93, 98, 101, 105, 108, 111, 116, 119, 123, 126, 130, 134, 137, 141, 144, 148, 152, 155, 159, 163, 167, 170, 173, 178, 181, 185, 188, 191, 196, 199, 203, 206, 211, 214, 217, 221, 224, 229, 232, 235, 239 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A189367.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

r = 2; s = Sqrt[2]; t = Sqrt[3];

f[n_] := n + Floor[n*s/r] + Floor[n*t/r];

g[n_] := n + Floor[n*r/s] + Floor[n*t/s];

h[n_] := n + Floor[n*r/t] + Floor[n*s/t]

Table[f[n], {n, 1, 120}]  (* A189367 *)

Table[g[n], {n, 1, 120}]  (* A189368 *)

Table[h[n], {n, 1, 120}]  (* A189369 *)

PROG

(PARI) for(n=1, 100, print1(n + floor(2*n/sqrt(2)) + floor(n*sqrt(3)/sqrt(2)), ", ")) \\ G. C. Greubel, Apr 20 2018

(MAGMA) [n + Floor(2*n/Sqrt(2)) + Floor(n*Sqrt(3)/Sqrt(2)): n in [1..100]]; // G. C. Greubel, Apr 20 2018

CROSSREFS

Cf. A189367, A189369.

Sequence in context: A276219 A267593 A248221 * A128039 A027428 A136850

Adjacent sequences:  A189365 A189366 A189367 * A189369 A189370 A189371

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 15:03 EST 2018. Contains 318049 sequences. (Running on oeis4.)