login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189366 a(n) = n + [n*r/t] + [n*s/t]; r=1, s=sqrt(2), t=(1+sqrt(5))/2. 3
1, 4, 6, 9, 12, 14, 17, 18, 21, 24, 26, 29, 32, 34, 37, 38, 41, 44, 46, 49, 51, 54, 57, 58, 61, 64, 66, 69, 71, 74, 77, 78, 81, 84, 86, 89, 91, 94, 97, 98, 101, 103, 106, 109, 111, 114, 117, 118, 121, 123, 126, 129, 131, 134, 136, 138, 141, 143, 146, 149, 151, 154, 156, 158, 161, 163, 166, 169, 171, 174, 176, 178, 181, 183, 186, 188, 191, 194, 196, 198, 201, 203, 206, 208 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A189364.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

MATHEMATICA

r = 1; s = Sqrt[2]; t = (1 + Sqrt[5])/2;

f[n_] := n + Floor[n*s/r] + Floor[n*t/r];

g[n_] := n + Floor[n*r/s] + Floor[n*t/s];

h[n_] := n + Floor[n*r/t] + Floor[n*s/t]

Table[f[n], {n, 1, 120}]  (* A189364 *)

Table[g[n], {n, 1, 120}]  (* A189365 *)

Table[h[n], {n, 1, 120}]  (* A189366 *)

Table[n+Floor[n/GoldenRatio]+Floor[(n Sqrt[2])/GoldenRatio], {n, 90}] (* Harvey P. Dale, Apr 12 2013 *)

PROG

(PARI) for(n=1, 100, print1(n + floor(2*n/(1+sqrt(5))) + floor(2*n*sqrt(2)/(1+sqrt(5))), ", ")) \\ G. C. Greubel, Apr 20 2018

(MAGMA) [n + Floor(2*n/(1+Sqrt(5))) + Floor(2*n*Sqrt(2)/(1+Sqrt(5))): n in [1..100]]; // G. C. Greubel, Apr 20 2018

CROSSREFS

Cf. A189364, A189365.

Sequence in context: A190081 A298468 A190304 * A066095 A003622 A189533

Adjacent sequences:  A189363 A189364 A189365 * A189367 A189368 A189369

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 23 19:07 EDT 2018. Contains 311804 sequences. (Running on oeis4.)