login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189361 a(n) = n + floor(n*s/r) + floor(n*t/r); r=1, s=sqrt(2), t=sqrt(3). 8
3, 7, 12, 15, 20, 24, 28, 32, 36, 41, 45, 48, 53, 57, 61, 65, 70, 74, 77, 82, 86, 91, 94, 98, 103, 107, 111, 115, 120, 123, 127, 132, 136, 140, 144, 148, 153, 156, 161, 165, 169, 173, 177, 182, 185, 190, 194, 198, 202, 206, 211, 215, 218, 223, 227, 231, 235, 240, 244, 247, 252, 256, 261, 264, 268, 273, 277, 281, 285, 289, 293, 297, 302, 306, 310, 314, 318, 323, 326, 331, 335, 339, 343 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This is one of three sequences that partition the positive integers.  In general, suppose that r, s, t are positive real numbers for which the sets {i/r: i>=1}, {j/s: j>=1}, {k/t: k>=1} are pairwise disjoint.  Let a(n) be the rank of n/r when all the numbers in the three sets are jointly ranked.  Define b(n) and c(n) as the ranks of n/s and n/t.  It is easy to prove that

a(n) = n + [n*s/r] + [n*t/r],

b(n) = n + [n*r/s] + [n*t/s],

c(n) = n + [n*r/t] + [n*s/t], where []=floor.

Taking r=1, s=sqrt(2), t=sqrt(3) gives

a=A189361, b=A189362, c=A189363.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

MATHEMATICA

r = 1; s = 2^(1/2); t = 3^(1/2);

a[n_] := n + Floor[n*s/r] + Floor[n*t/r];

b[n_] := n + Floor[n*r/s] + Floor[n*t/s];

c[n_] := n + Floor[n*r/t] + Floor[n*s/t]

Table[a[n], {n, 1, 120}]  (*A189361*)

Table[b[n], {n, 1, 120}]  (*A189362*)

Table[c[n], {n, 1, 120}]  (*A189363*)

CROSSREFS

Cf. A189362, A189363, A184812, A189383, A189386, A189395.

Sequence in context: A310232 A310233 A189458 * A107790 A310234 A310235

Adjacent sequences:  A189358 A189359 A189360 * A189362 A189363 A189364

KEYWORD

nonn

AUTHOR

Clark Kimberling, Apr 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 23:30 EDT 2021. Contains 346346 sequences. (Running on oeis4.)