login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A189101 G.f.: 1/(1-(x+x^2+x^3+x^4+x^6+x^7)). 1
1, 1, 2, 4, 8, 15, 30, 59, 115, 225, 441, 863, 1689, 3307, 6474, 12673, 24809, 48567, 95075, 186120, 364352, 713261, 1396290, 2733399, 5350944, 10475089, 20506194, 40143239, 78585017, 153839228, 301158021, 589551538, 1154115087, 2259313307, 4422866209 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compositions of n into parts !=5 and <=7. - Joerg Arndt, Jun 06 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.

Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,0,1,1).

PROG

(Maxima) makelist(coeff(taylor(1/(1-(x+x^2+x^3+x^4+x^6+x^7)), x, 0, n), x, n), n, 0, 34);  [Bruno Berselli, Jun 05 2011]

(PARI) Vec(1/(1-(x+x^2+x^3+x^4+x^6+x^7))+O(x^99)) \\ Charles R Greathouse IV, Feb 26 2014

CROSSREFS

This is the next one in the series A000931, A006498, A079976, A079968.

Sequence in context: A079967 A192655 A018088 * A018089 A124312 A068030

Adjacent sequences:  A189098 A189099 A189100 * A189102 A189103 A189104

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Apr 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 20:19 EST 2021. Contains 349588 sequences. (Running on oeis4.)