login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. 1/(1-(x+x^2+x^3+x^4+x^6+x^7)).
1

%I #28 Mar 17 2023 11:22:51

%S 1,1,2,4,8,15,30,59,115,225,441,863,1689,3307,6474,12673,24809,48567,

%T 95075,186120,364352,713261,1396290,2733399,5350944,10475089,20506194,

%U 40143239,78585017,153839228,301158021,589551538,1154115087,2259313307,4422866209

%N Expansion of g.f. 1/(1-(x+x^2+x^3+x^4+x^6+x^7)).

%C Compositions of n into parts !=5 and <=7. - _Joerg Arndt_, Jun 06 2011

%H Vincenzo Librandi, <a href="/A189101/b189101.txt">Table of n, a(n) for n = 0..300</a>

%H D. Applegate, M. LeBrun, and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Sloane/carry2.html">Dismal Arithmetic</a>, J. Int. Seq. 14 (2011) # 11.9.8.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,0,1,1).

%o (Maxima) makelist(coeff(taylor(1/(1-(x+x^2+x^3+x^4+x^6+x^7)), x, 0, n), x, n), n, 0, 34); /* _Bruno Berselli_, Jun 05 2011 */

%o (PARI) Vec(1/(1-(x+x^2+x^3+x^4+x^6+x^7))+O(x^99)) \\ _Charles R Greathouse IV_, Feb 26 2014

%Y This sequence is the next in the series after A000931, A006498, A079976, A079968.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Apr 19 2011