The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A189031 Zero-one sequence based on the sequence (6n-5): a(A016921(k))=a(k); a(A114024(k))=1-a(k); a(1)=0. 3
 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS EXAMPLE Let u=A016921 and v=A114024, so that u(n)=6n-5 and v=complement(u) for n>=1. Then a is a self-generating zero-one sequence with initial value a(1)=0 and a(u(k))=a(k); a(v(k))=1-a(k). MATHEMATICA u[n_] := 6n-5; (*A016921*) a[1] = 0; h = 128; c = (u[#1] &) /@ Range[h]; d = (Complement[Range[Max[#1]], #1] &)[c]; (*A114024*) Table[a[d[[n]]] = 1 - a[n], {n, 1, h - 1}]; Table[a[c[[n]]] = a[n], {n, 1, h}] (*A189031*) Flatten[Position[%, 0]] (*A189032*) Flatten[Position[%%, 1]] (*A189033*) CROSSREFS Cf. A188967, A189032, A189033. Sequence in context: A190204 A189028 A301850 * A189212 A147781 A327216 Adjacent sequences: A189028 A189029 A189030 * A189032 A189033 A189034 KEYWORD nonn AUTHOR Clark Kimberling, Apr 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 00:20 EST 2022. Contains 358362 sequences. (Running on oeis4.)