OFFSET
1,3
COMMENTS
Note that the lower bound, n-2*sqrt(n), is excluded from the count and the upper range, n, is included. The only zero term appears to be a(1). See A189027 for special primes associated with this sequence. This sequence is related to Legendre's conjecture that there is a prime between consecutive squares.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
Wikipedia, Legendre's conjecture
MATHEMATICA
cnt = 0; lastLower = -3; Table[lower = Floor[n - 2*Sqrt[n]]; If[lastLower < lower && PrimeQ[lower], cnt--]; lastLower = lower; If[PrimeQ[n], cnt++]; cnt, {n, 100}]
Table[PrimePi[n]-PrimePi[n-2Sqrt[n]], {n, 130}] (* Harvey P. Dale, Feb 28 2023 *)
PROG
(PARI) a(n)=if(n<default(primelimit), primepi(n)-primepi(n-2*sqrtint(n)), sum(k=n-2*sqrtint(n)+1, n, isprime(k))) \\ Charles R Greathouse IV, May 11 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Apr 15 2011
STATUS
approved