login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188728
Continued fraction of (e+sqrt(16+e^2))/4.
2
1, 1, 7, 1, 46, 8, 30, 1, 5, 4, 2, 6, 3, 2, 5, 1, 1, 1, 3, 50, 1, 3, 1, 1, 3, 1, 45, 1, 1, 1, 4, 1, 1, 2, 8, 2, 35, 2, 1, 27, 6, 112, 1, 113, 16, 1, 11, 1, 1, 6, 1, 12, 1, 3, 2, 15, 1, 2, 1, 1, 5, 1, 16, 2, 2, 2, 1, 10, 1, 43, 1, 13, 1, 6, 1, 4, 1, 2, 1, 1, 1, 6, 1, 8, 8, 1, 6, 3, 3, 17, 3, 1, 27, 1, 11, 1, 1, 1, 1, 1, 1, 9, 7, 2, 1, 5, 5, 7, 6, 2, 1, 5, 1, 2, 1, 5, 57, 8, 2, 1
OFFSET
0,3
COMMENTS
See A188727 for the origin of the constant.
LINKS
EXAMPLE
(e+sqrt(16+e^2))/4 = [1,1,7,1,46,30,1,5,4,...].
MATHEMATICA
r = e/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]] (* A188727 *)
ContinuedFraction[t, 120] (* A188728 *)
PROG
(PARI) default(realprecision, 100); contfrac((exp(1) + sqrt(16 + exp(2)))/4) \\ G. C. Greubel, Oct 31 2018
(Magma) SetDefaultRealField(RealField(100)); ContinuedFraction((Exp(1) + Sqrt(16 + Exp(2)))/4); // G. C. Greubel, Oct 31 2018
CROSSREFS
Cf. A188640, A188727 (decimal expansion).
Sequence in context: A373036 A225122 A051931 * A264617 A038267 A027466
KEYWORD
nonn,cofr
AUTHOR
Clark Kimberling, Apr 10 2011
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 08 2024
STATUS
approved