login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction of (e+sqrt(16+e^2))/4.
2

%I #17 Aug 09 2024 01:50:54

%S 1,1,7,1,46,8,30,1,5,4,2,6,3,2,5,1,1,1,3,50,1,3,1,1,3,1,45,1,1,1,4,1,

%T 1,2,8,2,35,2,1,27,6,112,1,113,16,1,11,1,1,6,1,12,1,3,2,15,1,2,1,1,5,

%U 1,16,2,2,2,1,10,1,43,1,13,1,6,1,4,1,2,1,1,1,6,1,8,8,1,6,3,3,17,3,1,27,1,11,1,1,1,1,1,1,9,7,2,1,5,5,7,6,2,1,5,1,2,1,5,57,8,2,1

%N Continued fraction of (e+sqrt(16+e^2))/4.

%C See A188727 for the origin of the constant.

%H G. C. Greubel, <a href="/A188728/b188728.txt">Table of n, a(n) for n = 0..9999</a>

%e (e+sqrt(16+e^2))/4 = [1,1,7,1,46,30,1,5,4,...].

%t r = e/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]

%t N[t, 130]

%t RealDigits[N[t, 130]][[1]] (* A188727 *)

%t ContinuedFraction[t, 120] (* A188728 *)

%o (PARI) default(realprecision, 100); contfrac((exp(1) + sqrt(16 + exp(2)))/4) \\ _G. C. Greubel_, Oct 31 2018

%o (Magma) SetDefaultRealField(RealField(100)); ContinuedFraction((Exp(1) + Sqrt(16 + Exp(2)))/4); // _G. C. Greubel_, Oct 31 2018

%Y Cf. A188640, A188727 (decimal expansion).

%K nonn,cofr

%O 0,3

%A _Clark Kimberling_, Apr 10 2011

%E Offset changed by _Andrew Howroyd_, Aug 08 2024