login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188594
Decimal expansion of (circumradius)/(inradius) of side-golden right triangle.
4
2, 6, 5, 6, 8, 7, 5, 7, 5, 7, 3, 3, 7, 5, 2, 1, 5, 4, 9, 4, 8, 9, 7, 3, 2, 1, 2, 2, 3, 8, 4, 0, 9, 3, 0, 2, 9, 7, 2, 3, 6, 6, 0, 2, 5, 1, 5, 7, 4, 6, 5, 9, 0, 7, 5, 6, 5, 5, 0, 2, 6, 7, 4, 7, 8, 9, 2, 6, 9, 2, 1, 0, 7, 0, 6, 6, 4, 4, 7, 9, 0, 8, 9, 3, 4, 5, 0, 4, 0, 6, 5, 0, 2, 2, 9, 4, 3, 8, 5, 5, 1, 2, 0, 7, 0, 6, 9, 3, 7, 2, 2, 9, 5, 4, 2, 5, 5, 5, 3, 2, 7, 4, 5, 2, 6, 3, 0, 3, 8, 1
OFFSET
1,1
COMMENTS
This ratio is invariant of the size of the side-golden right triangle ABC. The shape of ABC is given by sidelengths a,b,c, where a=r*b, and c=sqrt(a^2+b^2), where r=(golden ratio)=(1+sqrt(5))/2. This is the unique right triangle matching the continued fraction [1,1,1,...] of r; i.e, under the side-partitioning procedure described in the 2007 reference, there is exactly 1 removable subtriangle at each stage. (This is analogous to the removal of 1 square at each stage of the partitioning of the golden rectangle as a collection of squares.)
Largest root of 4*x^4 - 20*x^2 - 20*x - 5. - Charles R Greathouse IV, May 07 2011
LINKS
Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
FORMULA
(circumradius)/(inradius)=abc(a+b+c)/(8*area^2), where area=area(ABC).
Equals (sqrt(5) + phi*sqrt(2 + phi))/2, where phi = A001622 is the golden ratio. - G. C. Greubel, Nov 23 2017
EXAMPLE
2.656875757337521549489732...
MATHEMATICA
r=(1+5^(1/2))/2; b=1; a=r*b; c=(a^2+b^2)^(1/2);
area = (1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2);
RealDigits[N[a*b*c*(a+b+c)/(8*area^2), 130]][[1]]
RealDigits[(Sqrt[5] + GoldenRatio*Sqrt[2 + GoldenRatio])/(2), 10, 50][[1]] (* G. C. Greubel, Nov 23 2017 *)
PROG
(PARI) {phi = (1 + sqrt(5))/2}; (sqrt(5) + phi*sqrt(2 + phi))/2 \\ G. C. Greubel, Nov 23 2017
(Magma) phi := (1+Sqrt(5))/2; [(Sqrt(5) + phi*Sqrt(2 + phi))/2]; // G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Apr 05 2011
STATUS
approved