The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188090 [nr+kr]-[nr]-[kr], where r=sqrt(3), k=5, [ ]=floor. 3
 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS See A187950. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..10000 FORMULA a(n)=[nr+5r]-[nr]-[5r], where r=sqrt(3). MATHEMATICA r=3^(1/2); k=5; seqA=Table[Floor[n*r+k*r]-Floor[n*r]-Floor[k*r], {n, 1, 220}]   (* A188090 *) Flatten[Position[seqA, 0] ]   (* A188091 *) Flatten[Position[seqA, 1] ]   (* A188092 *) PROG (Python) from gmpy2 import isqrt def A188090(n):     return int(isqrt(3*(n+5)**2)-isqrt(3*n**2)) - 8 # Chai Wah Wu, Oct 08 2016 CROSSREFS Cf. A187950, A188091, A188092. Sequence in context: A030324 A014174 A014339 * A004547 A285358 A230603 Adjacent sequences:  A188087 A188088 A188089 * A188091 A188092 A188093 KEYWORD nonn AUTHOR Clark Kimberling, Mar 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 10:05 EDT 2022. Contains 353975 sequences. (Running on oeis4.)